关键词: 教师资格证
扫码添加专属备考顾问
▪ 0元领取考点真题礼包
▪ 获取1对1备考指导
1.教学原则
抽象与具体相结合、严谨性与量力性相结合原则(“循序渐进”)、理论与实际相结合原则(“学以致用”)、巩固与发展相结合原则(“温故而知新”)
2.教学过程
备课(备教材、备学生、备教法)、课堂教学(组织教学、复习提问、讲授新课、巩固新课、布置作业)、课外工作(作业批改、课外辅导、数学补课活动)、成绩的考核与评价(口头考察、书面考察)、教学评价(导向作用、鉴定作用、诊断作用、信息反馈与决策调控作用)
3.教学方法
⑴讲授法:科学性、系统性(循序渐进)、启发性、量力性(因材施教)、艺术性(教学语言)
⑵讨论法:体现“学生是学习的主体”的特点。
⑶自学辅导法:卢仲衡教授提出,要求学生肯自学、能自学、会自学、爱自学
⑷发现法:又称问题教学法(布鲁纳),步骤是创设问题情境;寻找问题答案,探讨问题解法;完善问题解答,总结思路方法;知识综合,充实改善学生的知识结构。
4.概念教学
⑴概念的内涵与外延:当概念的内涵扩大时,则概念的外延就缩小;当概念的内涵缩小时,则概念的外延就扩大。内涵和外延之间的这种关系,称为反变关系。
⑵概念间的逻辑关系:相容关系(同一关系如“等边三角形”和“正三角形”、交叉关系如“等腰三角形”和“直角三角形”、包含关系如“菱形”和“四边形”)、不相容关系(对立关系如“正数”和“负数”、矛盾关系如“负数”和“非负数”)
⑶概念下定义的常见方式:属加种差定义法(被定义的概念=邻近的属概念+种差,如“有一个角是直角的平行四边形是矩形”)、解释外延定义法(不易揭示其内涵,如“有理数和无理数统称实数”)、描述性定义法(用简明清晰的语言描述,如“”)
⑷数学概念获得的主要方式:概念形成(由学生发现)、概念同化(教师直接展示定义)
5.命题教学:整体性策略(旨在加强命题知识的横、纵向联系)、准备性策略(教学实施之 前)、问题性策略(激发学生的积极性)、情境化教学、过程性策略(暴露命题产生于证明的“所以然”过程)、产生式策略(变式练习)
6.推理教学
⑴推理的结构:任何推理都是由前提和结论两部分组成的
⑵推理的形式:演绎推理(由一般到特殊;前提真,结论真;三段论:大前提、小前提,得推理)、归纳推理(由特殊到一般)、类比推理(由特殊到特殊)
7.问题解决教学
⑴数学问题的设计原则:可行性原则、渐进性原则、应用性原则
⑵纯粹数学问题解决:波利亚怎样解题表(分析题意;拟定计划;执行计划;验算所得到的解)
⑶非常规问题解决:建模分析(分析问题背景,寻找数学联系;建立数学模型;求解数学模型;检验;交流和评价;推广)
8.学习方式:自主学习、探究学习、合作学习
相关推荐:
手机登录确认
微信扫码下载
微信扫一扫,即可下载